login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035796 Words over signatures (derived from multisets and multinomials). 3
1, 1, 2, 2, 3, 18, 4, 48, 6, 5, 36, 100, 144, 6, 200, 180, 600, 7, 450, 900, 294, 24, 300, 1800, 8, 882, 7200, 448, 1200, 1470, 4410, 9, 1568, 22050, 648, 7200, 3136, 1800, 9408, 10, 14700, 2592, 16200, 1960, 56448, 900, 29400, 6048, 22050, 18144 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
A reordering of A049009(n)=A049009(p(n)): distribution of words by numeric partition where the partition sequence: p(n)=[1],[2],[1,1],[3],[2,1],[1,1,1],[4],[3,1],[2,2],[2,1,1],... (A036036) is encoded by prime factorization ([P1,P2,P3,...] with P1 >= P2 >= P3 >= ... is encoded as 2^P1 * 3^P2 * 5^P3 *...): ep(n)=2,4,6,8,12,30,16,24,36,60, ... (A036035(n)) and then sorted: s(m)=2,4,6,8,12,16,24,30,32,36,48,60,... (A025487(m)). Hence A035796(n) = A049009(s(m)).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
a(n) = A049009(p) where p is such that A036035(p) = A025487(n). [Corrected by Andrew Howroyd and Sean A. Irvine, Oct 18 2020]
EXAMPLE
27 = a(5) + a(6) + a(9) since a8(4) = 3, a12(5) = 18, a30(8) = 6; 256 = a(7) + a(8) + a(11) + a(13) + a(22) = 4 + 48 + 36 + 144 + 24
27 = a(5) + a(6) + a(9) = A049009(4) + A049009(5) + A049009(6) = 3 + 18 + 6 since A036035(4) = 8 = A025487(4+1), A036035(5) = 12 = A025487(5+1), A036035(6) = 30 = A025487(8+1);...
PROG
(PARI) \\ here P is A025487 as vector and C is A049009 by partition.
GenS(lim)={my(L=List(), S=[1]); forprime(p=2, oo, listput(L, S); my(pp=vector(logint(lim, p), i, p^i)); S=concat([k*pp[1..min(if(k>1, my(f=factor(k)[, 2]); f[#f], oo), logint(lim\k, p))] | k<-S]); if(!#S, return(Set(concat(L)))) )}
P(n)={my(lim=1, v=[1]); while(#v<n, lim*=4; v=GenS(lim)); v[1..n]}
C(sig)={my(S=Set(sig)); (binomial(vecsum(sig), #sig)) * (#sig)! * vecsum(sig)! / (prod(k=1, #S, (#select(t->t==S[k], sig))!) * prod(k=1, #sig, sig[k]!))}
seq(n)={[C(factor(t)[, 2]) | t<-P(n)]} \\ Andrew Howroyd, Oct 18 2020
CROSSREFS
Sequence in context: A164022 A089751 A137909 * A049009 A101817 A058159
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms and additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 02 2001
a(1)=1 inserted by Andrew Howroyd and Sean A. Irvine, Oct 18 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 04:45 EDT 2024. Contains 375985 sequences. (Running on oeis4.)