login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035796 Words over signatures (derived from multisets and multinomials). 3
1, 1, 2, 2, 3, 18, 4, 48, 6, 5, 36, 100, 144, 6, 200, 180, 600, 7, 450, 900, 294, 24, 300, 1800, 8, 882, 7200, 448, 1200, 1470, 4410, 9, 1568, 22050, 648, 7200, 3136, 1800, 9408, 10, 14700, 2592, 16200, 1960, 56448, 900, 29400, 6048, 22050, 18144 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A reordering of A049009(n)=A049009(p(n)): distribution of words by numeric partition where the partition sequence: p(n)=[1],[2],[1,1],[3],[2,1],[1,1,1],[4],[3,1],[2,2],[2,1,1],... (A036036) is encoded by prime factorization ([P1,P2,P3,...] with P1 >= P2 >= P3 >= ... is encoded as 2^P1 * 3^P2 * 5^P3 *...): ep(n)=2,4,6,8,12,30,16,24,36,60, ... (A036035(n)) and then sorted: s(m)=2,4,6,8,12,16,24,30,32,36,48,60,... (A025487(m)). Hence A035796(n) = A049009(s(m)).

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..10000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

a(n) = A049009(p) where p is such that A036035(p) = A025487(n). [Corrected by Andrew Howroyd and Sean A. Irvine, Oct 18 2020]

EXAMPLE

27 = a(5) + a(6) + a(9) since a8(4) = 3, a12(5) = 18, a30(8) = 6; 256 = a(7) + a(8) + a(11) + a(13) + a(22) = 4 + 48 + 36 + 144 + 24

27 = a(5) + a(6) + a(9) = A049009(4) + A049009(5) + A049009(6) = 3 + 18 + 6 since A036035(4) = 8 = A025487(4+1), A036035(5) = 12 = A025487(5+1), A036035(6) = 30 = A025487(8+1);...

PROG

(PARI) \\ here P is A025487 as vector and C is A049009 by partition.

GenS(lim)={my(L=List(), S=[1]); forprime(p=2, oo, listput(L, S); my(pp=vector(logint(lim, p), i, p^i)); S=concat([k*pp[1..min(if(k>1, my(f=factor(k)[, 2]); f[#f], oo), logint(lim\k, p))] | k<-S]); if(!#S, return(Set(concat(L)))) )}

P(n)={my(lim=1, v=[1]); while(#v<n, lim*=4; v=GenS(lim)); v[1..n]}

C(sig)={my(S=Set(sig)); (binomial(vecsum(sig), #sig)) * (#sig)! * vecsum(sig)! / (prod(k=1, #S, (#select(t->t==S[k], sig))!) * prod(k=1, #sig, sig[k]!))}

seq(n)={[C(factor(t)[, 2]) | t<-P(n)]} \\ Andrew Howroyd, Oct 18 2020

CROSSREFS

Cf. A000312, A025487, A019575, A001700, A005651, A036035, A036036, A025487, A049009.

Sequence in context: A164022 A089751 A137909 * A049009 A101817 A058159

Adjacent sequences:  A035793 A035794 A035795 * A035797 A035798 A035799

KEYWORD

nonn

AUTHOR

Alford Arnold

EXTENSIONS

More terms and additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 02 2001

a(1)=1 inserted by Andrew Howroyd and Sean A. Irvine, Oct 18 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 04:05 EDT 2021. Contains 345451 sequences. (Running on oeis4.)