login
A101817
Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n} such that |Image(f)|=h; h=1,2,...,n, n=1,2,3,... . Essentially A090657, but without zeros.
8
1, 2, 2, 3, 18, 6, 4, 84, 144, 24, 5, 300, 1500, 1200, 120, 6, 930, 10800, 23400, 10800, 720, 7, 2646, 63210, 294000, 352800, 105840, 5040, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320, 9, 18360, 1524600, 23496480, 105099120
OFFSET
1,2
COMMENTS
Row sums = n^n. T(n,1) = n, T(n,n) = n!.
REFERENCES
H. Picquet, Note #124, L'Intermédiaire des Mathématiciens, 1 (1894), pp. 125-127. - N. J. A. Sloane, Feb 28 2022
FORMULA
T(n, h) = C(n, h)*U(n, h), where U(n, h) is the array in A019538. Thus T(n, h) = C(n, h)*h!*S(n, h), where S(n, h) is a Stirling number of the second kind (given by A048993 with zeros removed).
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017
EXAMPLE
First rows:
1;
2, 2;
3, 18, 6;
4, 84, 144, 24;
MATHEMATICA
Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 1, n}], {n, 1, 8}] // Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 17 2004
STATUS
approved