OFFSET
1,5
COMMENTS
Column 2 is A066524.
T(n,h) is the number of partial functions f:{1,2,...,n-1}->{1,2,...,n-1} such that |Image(f)| = h-1. Equivalently T(n,h) = |D_h(a)| where D_h(a) is Green's D-class containing a, with a in the semigroup of partial transformations on [n-1] and rank(a) = h-1. - Geoffrey Critzer, Jan 02 2022
REFERENCES
O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
FORMULA
T(n, h) = (1/n)*C(n, h)*U(n, h), where U(n, h) is the array in A019538.
T(n, h) = Stirling2(n,h)*(n-1)!/(n-h)!. - Geoffrey Critzer, Jan 02 2022
EXAMPLE
First rows:
1
1 1
1 6 2
1 21 36 6
MATHEMATICA
Table[Table[StirlingS2[n, k] (n-1)!/(n - k)!, {k, 1, n}], {n, 1,
6}] // Grid (* Geoffrey Critzer, Jan 02 2022 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 17 2004
EXTENSIONS
Offset changed to 1 by Alois P. Heinz, Jan 03 2022
STATUS
approved