login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138186
A triangular sequence based on expansion of the rational polynomial of A023054 as a Sheffer sequence: p(x,t)=Exp[x*t]*(1 - t^5)/((1 - t)*(1 - t^2)^2*(1 - t^3)).
0
1, 1, 1, 6, 2, 1, 24, 18, 3, 1, 168, 96, 36, 4, 1, 960, 840, 240, 60, 5, 1, 9360, 5760, 2520, 480, 90, 6, 1, 70560, 65520, 20160, 5880, 840, 126, 7, 1, 806400, 564480, 262080, 53760, 11760, 1344, 168, 8, 1, 7983360, 7257600, 2540160, 786240, 120960, 21168
OFFSET
1,4
COMMENTS
Row sums are:
{1, 2, 9, 46, 305, 2106, 18217, 163094, 1700001, 18711730, 232069961};
FORMULA
p(x,t)=Exp[x*t]*(1 - t^5)/((1 - t)*(1 - t^2)^2*(1 - t^3))=Sum(P(x,n)*t^n/n!,{n,0,Infinity}); Out_n,m=n!*Coefficients(P(x,n)).
EXAMPLE
{1},
{1, 1},
{6, 2, 1},
{24, 18, 3, 1},
{168, 96, 36, 4, 1},
{960, 840, 240, 60, 5, 1},
{9360, 5760, 2520, 480, 90, 6, 1},
{70560, 65520, 20160, 5880, 840, 126, 7, 1},
{806400, 564480, 262080, 53760, 11760, 1344, 168, 8, 1},
{7983360, 7257600, 2540160, 786240, 120960, 21168, 2016, 216, 9, 1},
{105235200, 79833600, 36288000, 8467200, 1965600, 241920, 35280, 2880, 270, 10, 1}
MATHEMATICA
p[t_] = Exp[x*t]*(1 - t^5)/((1 - t)*(1 - t^2)^2*(1 - t^3)) Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Cf. A023054.
Sequence in context: A181415 A289711 A101818 * A110321 A377763 A111553
KEYWORD
nonn,uned,tabl
AUTHOR
STATUS
approved