Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Oct 13 2012 14:31:44
%S 1,1,1,6,2,1,24,18,3,1,168,96,36,4,1,960,840,240,60,5,1,9360,5760,
%T 2520,480,90,6,1,70560,65520,20160,5880,840,126,7,1,806400,564480,
%U 262080,53760,11760,1344,168,8,1,7983360,7257600,2540160,786240,120960,21168
%N A triangular sequence based on expansion of the rational polynomial of A023054 as a Sheffer sequence: p(x,t)=Exp[x*t]*(1 - t^5)/((1 - t)*(1 - t^2)^2*(1 - t^3)).
%C Row sums are:
%C {1, 2, 9, 46, 305, 2106, 18217, 163094, 1700001, 18711730, 232069961};
%F p(x,t)=Exp[x*t]*(1 - t^5)/((1 - t)*(1 - t^2)^2*(1 - t^3))=Sum(P(x,n)*t^n/n!,{n,0,Infinity}); Out_n,m=n!*Coefficients(P(x,n)).
%e {1},
%e {1, 1},
%e {6, 2, 1},
%e {24, 18, 3, 1},
%e {168, 96, 36, 4, 1},
%e {960, 840, 240, 60, 5, 1},
%e {9360, 5760, 2520, 480, 90, 6, 1},
%e {70560, 65520, 20160, 5880, 840, 126, 7, 1},
%e {806400, 564480, 262080, 53760, 11760, 1344, 168, 8, 1},
%e {7983360, 7257600, 2540160, 786240, 120960, 21168, 2016, 216, 9, 1},
%e {105235200, 79833600, 36288000, 8467200, 1965600, 241920, 35280, 2880, 270, 10, 1}
%t p[t_] = Exp[x*t]*(1 - t^5)/((1 - t)*(1 - t^2)^2*(1 - t^3)) Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
%Y Cf. A023054.
%K nonn,uned,tabl
%O 1,4
%A _Roger L. Bagula_ and _Gary W. Adamson_, May 04 2008