login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A138185
Smallest prime >= n-th Fibonacci number.
5
2, 2, 2, 2, 3, 5, 11, 13, 23, 37, 59, 89, 149, 233, 379, 613, 991, 1597, 2591, 4201, 6779, 10949, 17713, 28657, 46381, 75029, 121403, 196429, 317827, 514229, 832063, 1346273, 2178313, 3524603, 5702897, 9227479, 14930387, 24157823, 39088193
OFFSET
0,1
LINKS
EXAMPLE
a(6) = 11 because 11 is the smallest prime not less than 8 (the 6th Fibonacci number).
MAPLE
with(combinat): a:=proc(n) if isprime(fibonacci(n))=true then fibonacci(n) else nextprime(fibonacci(n)) end if end proc: seq(a(n), n=0..35); # Emeric Deutsch, Mar 31 2008
MATHEMATICA
fib[0] = 0; fib[1] = 1; fib[n_] := fib[n] = fib[n - 1] + fib[n - 2] nextprime[n_] := Module[{k = n}, While[Not[PrimeQ[k]], k++ ]; k] Table[nextprime[fib[n]], {n, 0, 50}] (* Erich Friedman, Mar 26 2008 *)
NextPrime/@(Fibonacci[Range[0, 50]]-1) (* Harvey P. Dale, Nov 23 2011 *)
CROSSREFS
Cf. A138184.
Sequence in context: A029100 A356758 A098133 * A225941 A138705 A333528
KEYWORD
easy,nonn
AUTHOR
Colm Mulcahy, Mar 04 2008
EXTENSIONS
More terms from Erich Friedman and Emeric Deutsch, Mar 26 2008
Changed the definition of Fibonacci number to F(0) = 0, F(1) = 1, which is the standard definition. - Harry J. Smith, Jan 06 2009
STATUS
approved