login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288312
Number of endofunctions on [2n] such that the image size equals n.
4
1, 2, 84, 10800, 2857680, 1285956000, 880599202560, 853262368358400, 1111400775560275200, 1873276460474747328000, 3967400888465895264384000, 10313998054713896966296473600, 32291970618091110826769565696000, 119851615755915509174015455948800000
OFFSET
0,2
LINKS
FORMULA
a(n) = Stirling2(2*n,n) * n! * binomial(2*n,n).
a(n) = A090657(2n,n) = A101817(2n,n) = A219859(2n,n).
a(n) ~ n^(2*n - 1/2) * 2^(4*n) / (sqrt(Pi*(1-c)) * c^n * (2-c)^n * exp(2*n)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Jun 10 2017
EXAMPLE
a(1) = 2: (1,1), (2,2).
MAPLE
b:= proc(n, k) option remember; `if`(k=n, n!,
`if`(k=0, 0, n*(b(n-1, k-1)+b(n-1, k)*k/(n-k))))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..15);
MATHEMATICA
Table[StirlingS2[2*n, n]*(2*n)!/n!, {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2017 *)
PROG
(PARI) a(n)=stirling(2*n, n, 2)*n!*binomial(2*n, n); \\ Indranil Ghosh, Jul 04 2017
(Python)
from mpmath import *
mp.dps=100
def a(n): return int(stirling2(2*n, n)*fac(n)*binomial(2*n, n))
print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 07 2017
STATUS
approved