Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jan 18 2022 06:00:16
%S 1,1,2,2,3,18,6,4,48,36,144,24,5,100,200,600,900,1200,120,6,180,450,
%T 300,1800,7200,1800,7200,16200,10800,720,7,294,882,1470,4410,22050,
%U 14700,22050,29400,176400,88200,88200,264600,105840,5040,8,448,1568,3136,1960
%N Number of functions from a set to itself such that the sizes of the preimages of the individual elements in the range form the n-th partition in Abramowitz and Stegun order.
%C a(n,k) is a refinement of 1; 2,2; 3,18,6; 4,84,144,24; ... cf. A019575.
%C a(n,k)/A036040(n,k) and a(n,k)/A048996(n,k) are also integer sequences.
%C Apparently a(n,k)/A036040(n,k) = A178888(n,k). - _R. J. Mathar_, Apr 17 2011
%C Let f,g be functions from [n] into [n]. Let S_n be the symmetric group on n letters. Then f and g form the same partition iff S_nfS_n = S_ngS_n. - _Geoffrey Critzer_, Jan 13 2022
%D O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page38.
%H Andrew Howroyd, <a href="/A049009/b049009.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%F a(n,k) = A036038(n,k) * A035206(n,k).
%e Table begins:
%e 1;
%e 1;
%e 2, 2;
%e 3, 18, 6;
%e 4, 48, 36, 144, 24;
%e ...
%e For n = 4, partition [3], we can map all three of {1,2,3} to any one of them, for 3 possible values. For n=5, partition [2,1], there are 3 choices for which element is alone in a preimage, 3 choices for which element to map that to and then 2 choices for which element to map the pair to, so a(5) = 3*3*2 = 18.
%t f[list_] := Multinomial @@ Join[{nn - Length[list]}, Table[Count[list, i], {i, 1, nn}]]*Multinomial @@ list; Table[nn = n; Map[f, IntegerPartitions[nn]], {n, 0, 10}] // Grid (* _Geoffrey Critzer_, Jan 13 2022 *)
%o (PARI)
%o C(sig)={my(S=Set(sig)); (binomial(vecsum(sig), #sig)) * (#sig)! * vecsum(sig)! / (prod(k=1, #S, (#select(t->t==S[k], sig))!) * prod(k=1, #sig, sig[k]!))}
%o Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
%o { for(n=0, 7, print(Row(n))) } \\ _Andrew Howroyd_, Oct 18 2020
%Y Cf. A019575, A035206, A035796, A036038, A036040, A048996.
%Y Row sizes A000041, sums A000312.
%K nonn,tabf,easy
%O 0,3
%A _Alford Arnold_
%E Better definition from _Franklin T. Adams-Watters_, May 30 2006
%E a(0)=1 prepended by _Andrew Howroyd_, Oct 18 2020