Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 08 2022 08:45:15
%S 1,3,13,37,81,151,253,393,577,811,1101,1453,1873,2367,2941,3601,4353,
%T 5203,6157,7221,8401,9703,11133,12697,14401,16251,18253,20413,22737,
%U 25231,27901,30753,33793,37027,40461,44101,47953,52023,56317,60841,65601
%N a(n) = n^3 + n^2 + 1.
%H G. C. Greubel, <a href="/A098547/b098547.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Colin Barker_, Aug 29 2014
%F G.f.: (1 - x + 7*x^2 - x^3)/(1-x)^4. - _Colin Barker_, Aug 29 2014
%F a(n) = A081423(n) + A000217(n-1). - _Bruce J. Nicholson_, Jan 06 2019
%p with(combinat): seq(fibonacci(3,n)+n^3, n=0..40); # _Zerinvary Lajos_, May 25 2008
%t Table[n^3+n^2+1,{n,0,100}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 09 2011 *)
%o (Magma) [(n^3+n^2+1): n in [1..60]]; // _Vincenzo Librandi_, Apr 06 2011
%o (PARI) Vec(-(x^3-7*x^2+x-1)/(x-1)^4 + O(x^100)) \\ _Colin Barker_, Aug 29 2014
%Y Cf. A000578, A066023, A001093, A034262, A071568, A011379, A027444, A053698, A033431, A033562, A061317.
%Y Cf. A081423, A000217.
%K nonn,easy
%O 0,2
%A Douglas Winston (douglas.winston(AT)srupc.com), Oct 26 2004