OFFSET
0,1
COMMENTS
a(n) = Numerator of (4*n^3+30*n^2+70*n+50)/((n+1)*(n+2)*(n+3)*(n+4)).
(4*n^3+30*n^2+70*n+50)/a(n) has period length 9, repeating 1, 1, 9, 1, 1, 3, 1, 1, 3.
It is of interest to note that the roots of 4*n^3+30*n^2+70*n+50 are -phi-2, phi-3, and -5/2, where phi = (1+sqrt(5))/2.
H(n+4)-H(n) = (2*n^3+15*n^2+35*n+25)/(12*binomial(n+4,4)).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (4*n^3+30*n^2+70*n+50)/(2*(1+2*P(3, n+1))*(1+2*P(9, n+7))), where P(k, n) = floor(1/2*cos(2*n*Pi/k)+3/5).
MAPLE
h:=n-> sum(1/k, k=1..n):seq(numer(h(n+4)-h(n)), n=0..30);
# alternative Maple program:
P:=(k, n)-> floor(1/2*cos(2*n*Pi/k)+3/5):
seq((4*n^3+30*n^2+70*n+50)/(2*(1+2*P(3, n+1))*(1+2*P(9, n+7))), n=0..30);
MATHEMATICA
Numerator[Table[HarmonicNumber[n+4] - HarmonicNumber[n], {n, 0, 100}]] (* T. D. Noe, May 24 2011 *)
PROG
(Magma) Harmonic:=func< n | n eq 0 select 0 else &+[ 1/k: k in [1..n] ] >; A189642:=func< n | Numerator( Harmonic(n+4)-Harmonic(n) ) >; [ Numerator( A189642(n) ): n in [0..40] ]; // Klaus Brockhaus, May 21 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, May 02 2011
STATUS
approved