login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189642
Numerator of H(n+4) - H(n), where H(n) = Sum_{k=1..n} 1/k.
3
25, 77, 19, 319, 533, 275, 1207, 1691, 763, 3013, 3875, 543, 6061, 7409, 2981, 10675, 12617, 4927, 17179, 19823, 2525, 25897, 29351, 11033, 37153, 41525, 15409, 51271, 56669, 6937, 68575, 75107, 27347, 89389, 97163, 35125, 114037, 123161, 14751, 142843, 153425
OFFSET
0,1
COMMENTS
a(n) = Numerator of (4*n^3+30*n^2+70*n+50)/((n+1)*(n+2)*(n+3)*(n+4)).
(4*n^3+30*n^2+70*n+50)/a(n) has period length 9, repeating 1, 1, 9, 1, 1, 3, 1, 1, 3.
It is of interest to note that the roots of 4*n^3+30*n^2+70*n+50 are -phi-2, phi-3, and -5/2, where phi = (1+sqrt(5))/2.
H(n+4)-H(n) = (2*n^3+15*n^2+35*n+25)/(12*binomial(n+4,4)).
FORMULA
a(n) = (4*n^3+30*n^2+70*n+50)/(2*(1+2*P(3, n+1))*(1+2*P(9, n+7))), where P(k, n) = floor(1/2*cos(2*n*Pi/k)+3/5).
MAPLE
h:=n-> sum(1/k, k=1..n):seq(numer(h(n+4)-h(n)), n=0..30);
# alternative Maple program:
P:=(k, n)-> floor(1/2*cos(2*n*Pi/k)+3/5):
seq((4*n^3+30*n^2+70*n+50)/(2*(1+2*P(3, n+1))*(1+2*P(9, n+7))), n=0..30);
MATHEMATICA
Numerator[Table[HarmonicNumber[n+4] - HarmonicNumber[n], {n, 0, 100}]] (* T. D. Noe, May 24 2011 *)
PROG
(Magma) Harmonic:=func< n | n eq 0 select 0 else &+[ 1/k: k in [1..n] ] >; A189642:=func< n | Numerator( Harmonic(n+4)-Harmonic(n) ) >; [ Numerator( A189642(n) ): n in [0..40] ]; // Klaus Brockhaus, May 21 2011
CROSSREFS
Sequence in context: A042224 A042228 A042230 * A221309 A192504 A363635
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, May 02 2011
STATUS
approved