|
|
A221309
|
|
Numbers m such that no subset of {m-1, m, m+1} sums up to a prime number.
|
|
3
|
|
|
25, 77, 85, 92, 93, 94, 118, 122, 123, 124, 133, 143, 144, 145, 160, 161, 170, 171, 185, 188, 202, 203, 206, 207, 208, 213, 214, 218, 235, 236, 237, 247, 248, 253, 259, 265, 266, 267, 275, 287, 290, 291, 295, 298, 302, 305, 319, 325, 328, 333, 334, 335, 340
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A117499(a(n)) = 0.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
a(1) = 25: there are 7 nonempty subsets of {25-1, 25, 25+1}: {24}, {25}, {26}, {24,25}, {24,26}, {25,26} and {24,25,26} with sums and factorizations: 24=3*2^3, 25=5^2, 26=13*2, 49=7^2, 50=5^2*2, 51=17*3 and 75=5^2*3.
|
|
PROG
|
(Haskell)
a221309 n = a221309_list !! (n-1)
a221309_list = map (+ 1) $ elemIndices 0 a117499_list
|
|
CROSSREFS
|
Subsequence of A079364.
Sequence in context: A042228 A042230 A189642 * A192504 A033658 A080699
Adjacent sequences: A221306 A221307 A221308 * A221310 A221311 A221312
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Jan 10 2013
|
|
STATUS
|
approved
|
|
|
|