login
A221309
Numbers m such that no subset of {m-1, m, m+1} sums up to a prime number.
3
25, 77, 85, 92, 93, 94, 118, 122, 123, 124, 133, 143, 144, 145, 160, 161, 170, 171, 185, 188, 202, 203, 206, 207, 208, 213, 214, 218, 235, 236, 237, 247, 248, 253, 259, 265, 266, 267, 275, 287, 290, 291, 295, 298, 302, 305, 319, 325, 328, 333, 334, 335, 340
OFFSET
1,1
COMMENTS
A117499(a(n)) = 0.
LINKS
EXAMPLE
a(1) = 25: there are 7 nonempty subsets of {25-1, 25, 25+1}: {24}, {25}, {26}, {24,25}, {24,26}, {25,26} and {24,25,26} with sums and factorizations: 24=3*2^3, 25=5^2, 26=13*2, 49=7^2, 50=5^2*2, 51=17*3 and 75=5^2*3.
PROG
(Haskell)
a221309 n = a221309_list !! (n-1)
a221309_list = map (+ 1) $ elemIndices 0 a117499_list
CROSSREFS
Subsequence of A079364.
Sequence in context: A042228 A042230 A189642 * A192504 A363635 A033658
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 10 2013
STATUS
approved