The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157916 a(n) = 50*n^2 + 1. 2
 51, 201, 451, 801, 1251, 1801, 2451, 3201, 4051, 5001, 6051, 7201, 8451, 9801, 11251, 12801, 14451, 16201, 18051, 20001, 22051, 24201, 26451, 28801, 31251, 33801, 36451, 39201, 42051, 45001, 48051, 51201, 54451, 57801, 61251, 64801, 68451 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (50*n^2+1)^2-(625*n^2+25)*(2*n)^2 = 1 can be written as a(n)^2-A157915(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 10 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(51+48*x+x^2)/(1-x)^3. - Vincenzo Librandi, Feb 10 2012 a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Vincenzo Librandi, Feb 10 2012 MAPLE A157916:=n->50*n^2+1: seq(A157916(n), n=1..60); # Wesley Ivan Hurt, Jan 27 2017 MATHEMATICA LinearRecurrence[{3, -3, 1}, {51, 201, 451}, 40] (* Vincenzo Librandi, Feb 10 2012 *) PROG (MAGMA) I:=[51, 201, 451]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 10 2012 (PARI) for(n=1, 40, print1(50*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 10 2012 CROSSREFS Cf. A157915, A005843. Sequence in context: A245829 A031431 A157365 * A007264 A158640 A107253 Adjacent sequences:  A157913 A157914 A157915 * A157917 A157918 A157919 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 09 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 16:19 EDT 2021. Contains 345037 sequences. (Running on oeis4.)