login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157913
a(n) = 64*n^2 - 16.
2
48, 240, 560, 1008, 1584, 2288, 3120, 4080, 5168, 6384, 7728, 9200, 10800, 12528, 14384, 16368, 18480, 20720, 23088, 25584, 28208, 30960, 33840, 36848, 39984, 43248, 46640, 50160, 53808, 57584, 61488, 65520, 69680, 73968, 78384, 82928, 87600, 92400, 97328, 102384
OFFSET
1,1
COMMENTS
The identity (8*n^2 - 1)^2 - (64*n^2 - 16)*n^2 = 1 can be written as A157914(n)^2 - a(n)*n^2 = 1. - Vincenzo Librandi, Feb 09 2012
FORMULA
From Vincenzo Librandi, Feb 09 2012: (Start)
G.f.: -16*x*(3 + 6*x - x^2)/(x - 1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/32.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi-2)/64. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {48, 240, 560}, 50] (* Vincenzo Librandi, Feb 09 2012 *)
64*Range[40]^2-16 (* Harvey P. Dale, Jul 27 2012 *)
PROG
(Magma) I:=[48, 240, 560]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012
(PARI) for(n=1, 40, print1(64*n^2 - 16", ")); \\ Vincenzo Librandi, Feb 09 2012
CROSSREFS
Cf. A157914.
Sequence in context: A211760 A333670 A230136 * A181773 A052683 A206054
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 09 2009
STATUS
approved