Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 07 2023 02:27:25
%S 49,199,449,799,1249,1799,2449,3199,4049,4999,6049,7199,8449,9799,
%T 11249,12799,14449,16199,18049,19999,22049,24199,26449,28799,31249,
%U 33799,36449,39199,42049,44999,48049,51199,54449,57799,61249,64799,68449,72199,76049,79999
%N a(n) = 50*n^2 - 1.
%C The identity (50*n^2 - 1)^2 - (625*n^2 - 25)*(2*n)^2 = 1 can be written as a(n)^2 - A157918(n)*A005843(n)^2 = 1. - _Vincenzo Librandi_, Feb 10 2012
%H Vincenzo Librandi, <a href="/A157919/b157919.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F From _Vincenzo Librandi_, Feb 10 2012: (Start)
%F G.f.: -x*(49 + 52*x - x^2)/(x-1)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
%F From _Amiram Eldar_, Mar 07 2023: (Start)
%F Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(5*sqrt(2)))*Pi/(5*sqrt(2)))/2.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(5*sqrt(2)))*Pi/(5*sqrt(2)) - 1)/2. (End)
%t LinearRecurrence[{3, -3, 1}, {49, 199, 449}, 50] (* _Vincenzo Librandi_, Feb 10 2012 *)
%t 50 Range[40]^2-1 (* _Harvey P. Dale_, Dec 15 2018 *)
%o (Magma) I:=[49, 199, 449]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 10 2012
%o (PARI) for(n=1, 40, print1(50*n^2 - 1", ")); \\ _Vincenzo Librandi_, Feb 10 2012
%Y Cf. A157918, A005843.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Mar 09 2009