|
|
A051795
|
|
Doubly balanced primes: primes which are averages of both their immediate and their second neighbors.
|
|
16
|
|
|
18731, 25621, 28069, 30059, 31051, 44741, 76913, 97441, 103669, 106681, 118831, 128449, 135089, 182549, 202999, 240491, 245771, 249199, 267569, 295387, 347329, 372751, 381401, 435751, 451337, 455419, 471521, 478099, 498301, 516877, 526441
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Could also be called overbalanced or [3,5]-balanced primes: balanced primes which are equally average of 3,5 consecutive prime neighbors as follows: a(n)=[q+a(n)+r]/3=[p+q+a(n)+r+s]/5 See 3-balanced=A006562;[3,5,7]-balanced=A081415. - Labos Elemer, Apr 02 2003
|
|
LINKS
|
|
|
EXAMPLE
|
25621 belongs to the sequence because 25621 = (25609 + 25633)/2 = (25603 + 25609 + 25633 + 25639)/4.
|
|
MAPLE
|
P:=proc(q) local n; for n from 3 to q do
if (ithprime(n-1)+ithprime(n+1))/2=ithprime(n) and (ithprime(n-2)+ithprime(n+2))/2=ithprime(n) then print(ithprime(n)); fi; od; end: P(10^6); # Paolo P. Lava, Mar 17 2014
|
|
MATHEMATICA
|
Do[s=Prime[n-1]+Prime[n]+Prime[n+1]; s1=Prime[n-2]+s+Prime[n+2]; If[Equal[s/3, Prime[n]]&&Equal[s1/5, Prime[n]], Print[Prime[n]]], {n, 4, 1000000}] (* Labos Elemer *)
Transpose[Select[Partition[Prime[Range[50000]], 5, 1], (#[[1]]+#[[5]])/2 == (#[[2]]+#[[4]])/2 == #[[3]]&]][[3]] (* Harvey P. Dale, Sep 13 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|