OFFSET
1,1
COMMENTS
Could also be called overbalanced or [3,5]-balanced primes: balanced primes which are equally average of 3,5 consecutive prime neighbors as follows: a(n)=[q+a(n)+r]/3=[p+q+a(n)+r+s]/5 See 3-balanced=A006562;[3,5,7]-balanced=A081415. - Labos Elemer, Apr 02 2003
Numbers m such that A346399(m) is odd and >= 5. - Ya-Ping Lu, May 11 2024
LINKS
Jud McCranie and Sebastian Petzelberger, Table of n, a(n) for n = 1..10000 (first 1000 terms from Jud McCranie)
EXAMPLE
25621 belongs to the sequence because 25621 = (25609 + 25633)/2 = (25603 + 25609 + 25633 + 25639)/4.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[50000]], 5, 1], (#[[1]]+#[[5]])/2 == (#[[2]]+#[[4]])/2 == #[[3]]&]][[3]] (* Harvey P. Dale, Sep 13 2013 *)
PROG
(Python)
from sympy import nextprime; p, q, r, s, t = 2, 3, 5, 7, 11
while t < 580000:
if p + t == q + s == 2*r: print(r, end = ', ')
p, q, r, s, t = q, r, s, t, nextprime(t) # Ya-Ping Lu, May 11 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Harvey P. Dale, Dec 10 1999
STATUS
approved