login
A051794
a(n) = Sum_{i=n-6..n-1} (-1)^i * a(i), a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1.
1
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, -1, 1, 1, 1, 1, 1, 2, -1, -3, 1, 1, 1, 1, 2, 5, -3, -7, 1, 1, 1, 0, 5, 13, -7, -15, 1, 1, 0, -5, 13, 33, -15, -31, 1, 2, -5, -23, 33, 81, -31, -63, 2, 9, -23, -79, 81, 193, -63, -128, 9, 41, -79, -239, 193, 449, -128, -265, 41, 161, -239
OFFSET
1,21
COMMENTS
Same as the 12th-order equation given in the Mathematica program. - T. D. Noe, Feb 22 2012
FORMULA
G.f.: -x*(x^2-x+1)*(x^2+x+1)*(2*x^7+x^6+x^5+x^4+x^3+x^2+x+1) / (x^12+x^10+x^8-x^6-x^4-x^2-1). - Colin Barker, Mar 17 2015
MATHEMATICA
LinearRecurrence[{0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1}, 100] (* T. D. Noe, Feb 22 2012 *)
PROG
(PARI) Vec(-x*(x^2-x+1)*(x^2+x+1)*(2*x^7+x^6+x^5+x^4+x^3+x^2+x+1) / (x^12+x^10+x^8-x^6-x^4-x^2-1) + O(x^100)) \\ Colin Barker, Mar 17 2015
CROSSREFS
Sequence in context: A324725 A373361 A328392 * A333305 A110969 A362681
KEYWORD
easy,nice,sign
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 10 1999
STATUS
approved