|
|
A217200
|
|
Number of permutations in S_{n+2} containing an increasing subsequence of length n.
|
|
2
|
|
|
2, 6, 23, 78, 207, 458, 891, 1578, 2603, 4062, 6063, 8726, 12183, 16578, 22067, 28818, 37011, 46838, 58503, 72222, 88223, 106746, 128043, 152378, 180027, 211278, 246431, 285798, 329703, 378482, 432483, 492066, 557603, 629478, 708087, 793838, 887151, 988458
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
a(0) = 2, a(n) = 3+n+n^2/2+n^3+n^4/2 for n>0.
G.f.: (x^5-3*x^4+3*x^3+13*x^2-4*x+2)/(1-x)^5.
|
|
EXAMPLE
|
a(2) = 23: only one of 4! = 24 permutations of {1,2,3,4} has no increasing subsequence of length 2: 4321.
|
|
MAPLE
|
a:= n-> 3+(2+(1+(n+2)*n)*n)*n/2-`if`(n=0, 1, 0):
seq(a(n), n=0..60);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|