This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217199 Odd primes p such that 2p-1 is prime and no p is equal to 2q-1 with q in the sequence. 3
 3, 7, 19, 31, 79, 97, 139, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, 547, 577, 601, 607, 619, 691, 727, 811, 829, 937, 967, 1009, 1069, 1171, 1279, 1297, 1399, 1429, 1459, 1531, 1609, 1627, 1759, 1867, 2011, 2029, 2089, 2131, 2179, 2221, 2281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS At each step, the smallest possible p is chosen. These are the primes described in lemma 2 of the paper by Holt. - T. D. Noe, Sep 28 2012 LINKS Michel Marcus, Table of n, a(n) for n = 1..1000 Jeffery J. Holt, The minimal number of solutions to phi(n)=phi(n+k), Math. Comp., 72 (2003), 2059-2061. A. Schinzel and Andrzej Wakulicz, Sur l'équation phi(x+k)=phi(x), I., Acta Arith. 4 (1958), 181-184. MATHEMATICA t = {}; p = 2; Do[p = NextPrime[p]; If[PrimeQ[2*p - 1] && ! MemberQ[2*t - 1, p], AppendTo[t, p]], {PrimePi[2281]}]; t PROG (PARI) intab(val, tab) = {for (ii=1, length(tab), if (tab[ii] == val, return (1); ); ); return(0); } prseq(n) = {tab = []; for (i=1, n, len = length(tab); if (len == 0, p = 3, p = nextprime(tab[len]+1)); while (! isprime(2*p-1) || intab((p+1)/2, tab) , p = nextprime(p+1); ); tab = concat(tab, p); print1(p, ", "); ); } CROSSREFS Cf. A110581, A217198. Sequence in context: A093932 A141173 A145472 * A077313 A102271 A145039 Adjacent sequences:  A217196 A217197 A217198 * A217200 A217201 A217202 KEYWORD nonn AUTHOR Michel Marcus, Sep 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 06:14 EDT 2019. Contains 322329 sequences. (Running on oeis4.)