login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374912
Primes p such that (p - 1)^p == p (mod 2*p - 1).
4
3, 7, 19, 31, 79, 139, 199, 211, 271, 307, 331, 367, 379, 439, 499, 547, 607, 619, 691, 727, 811, 967, 1171, 1279, 1399, 1459, 1531, 1627, 1759, 1867, 2011, 2131, 2179, 2311, 2467, 2539, 2551, 2707, 2719, 2791, 2851, 3019, 3067, 3187, 3319, 3331, 3391, 3499, 3607, 3739, 3967
OFFSET
1,1
FORMULA
a(n) == 7 (mod 12) for n>1. - Hugo Pfoertner, Jul 24 2024
MATHEMATICA
Select[Prime[Range[1000]], PowerMod[# - 1, #, 2*# - 1] == # &] (* Paolo Xausa, Jul 24 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(10^4) | (p-1)^p mod (2*p-1) eq p];
(PARI) list(lim)=my(v=List([3])); forprimestep(p=7, lim\1, 12, if(Mod(p-1, 2*p-1)^p==p, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Jul 23 2024
CROSSREFS
Aside from the first term, a subsequence of A068229.
Sequence in context: A145472 A217199 A077313 * A102271 A145039 A112633
KEYWORD
nonn
AUTHOR
STATUS
approved