login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112633
Mersenne prime indices that are also Gaussian primes.
11
3, 7, 19, 31, 107, 127, 607, 1279, 2203, 4423, 86243, 110503, 216091, 756839, 1257787, 20996011, 24036583, 25964951, 37156667
OFFSET
1,1
COMMENTS
Also, primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 7 mod 5!. - Artur Jasinski, Sep 30 2008. Proof that this is the same sequence, from Jeppe Stig Nielsen, Jan 02 2018: An odd index p>2 will be either 1 or 3 mod 4. If it is 1, then 2^p = 2^(4k+1) will be 2 mod 5, and be 0 mod 4, and be 2 mod 3. This completely determines 2^p (and hence 2^p - 1) mod 5!. The other case, when p is 3 mod 4, will make 2^p congruent to 3 mod 5, to 0 mod 4, and to 2 mod 3. This leads to the other (distinct) value of 2^p mod 5!.
FORMULA
The intersection of A000043 and A002145. - R. J. Mathar, Oct 06 2008
MATHEMATICA
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 5! ] == 7, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a (* Artur Jasinski, Sep 30 2008 *)
Select[{2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}, Mod[2^#-1, 120]==7&] (* Harvey P. Dale, Nov 26 2013 *)
Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 120] == 8 &] (* Amiram Eldar, Oct 19 2024 *)
PROG
(Python)
from itertools import count, islice
from sympy import isprime, prime
def A112633_gen(): # generator of terms
return filter(lambda p: p&2 and isprime((1<<p)-1), (prime(n) for n in count(2)))
A112633_list = list(islice(A112633_gen(), 10)) # Chai Wah Wu, Mar 21 2023
KEYWORD
nonn,more
AUTHOR
Jorge Coveiro, Dec 27 2005
EXTENSIONS
Edited by N. J. A. Sloane, Jan 06 2018
a(19) from Ivan Panchenko, Apr 12 2018
STATUS
approved