login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A145040
Primes p such that 2^p-1 is prime and congruent to 31 mod 5!.
2
5, 13, 17, 61, 89, 521, 2281, 3217, 4253, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 132049, 859433, 1398269, 2976221, 3021377, 6972593, 13466917, 30402457, 32582657, 42643801, 43112609, 57885161
OFFSET
1,1
COMMENTS
Mersenne numbers (with the exception of the first one) are congruent to 7 or 31 mod 5!. This sequence is a subsequence of A000043.
Is this 2 together with the terms of A112634? - R. J. Mathar, Mar 18 2009
Yes. An odd index p > 2 will be congruent to either 1 or 3 mod 4. If it is 1, then 2^p = 2^(4k+1) will be congruent to 2 mod 5, to 0 mod 4, and to 2 mod 3. This completely determines 2^p (and hence 2^p - 1) mod 5!. The other case, when p is congruent to 3 mod 4, will make 2^p congruent to 3 mod 5, to 0 mod 4, and to 2 mod 3. This leads to the other (distinct) value of 2^p mod 5!. This proves that this sequence is just A112634 without the initial term 2. - Jeppe Stig Nielsen, Jan 02 2018
From Jinyuan Wang, Nov 24 2019: (Start)
2^a(n) - 1 is congruent to 1 mod 5 since a(n) is congruent to 1 mod 4, so 5^(2^(a(n)-1) - 1) == (5, 2^a(n) - 1) == (2^a(n) - 1, 5)*(-1)^(2^a(n) - 1) == 1 (mod 2^a(n) - 1), where (m,p) is the Legendre symbol.
Conjecture: For n > 1, the Mersenne number M(n) = 2^n - 1 is in this sequence iff 5^M(n-1) == 1 (mod M(n)). (End)
LINKS
FORMULA
a(n) = A112634(n+1). - Jeppe Stig Nielsen, Jan 02 2018
MATHEMATICA
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 5! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a
Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 120] == 32 &] (* Amiram Eldar, Oct 19 2024 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(q=2^p-1) && ((q % 120)==31); \\ Michel Marcus, Jan 06 2018
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Sep 30 2008
EXTENSIONS
42643801 inserted by R. J. Mathar, Jul 31 2009
a(28) from Amiram Eldar, Oct 19 2024
STATUS
approved