login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145472
Primes p such that (p+7)/2 is prime.
3
3, 7, 19, 31, 67, 79, 127, 139, 151, 199, 211, 271, 307, 379, 439, 547, 607, 619, 691, 727, 739, 751, 787, 811, 859, 907, 919, 967, 991, 1039, 1087, 1231, 1279, 1447, 1459, 1471, 1531, 1567, 1699, 1747, 1759, 1831, 1867, 1987, 2011, 2131, 2179, 2239, 2251
OFFSET
1,1
COMMENTS
All these primes are congruent to 3 mod 4 and (with the exception of the first one) to 7 mod 12.
LINKS
MATHEMATICA
aa = {}; k = 7; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}]; aa
Select[Prime[Range[400]], PrimeQ[(#+7)/2]&] (* Harvey P. Dale, Jan 11 2020 *)
PROG
(Magma) [p: p in PrimesUpTo(2500)| IsPrime((p + 7) div 2)]; // Vincenzo Librandi, Feb 04 2013
(PARI) list(n)=my(t=1, p, i=1); while(i<n, p=prime(i); i=i+1; if(p>2&&isprime((7+p)/2), print1(n, ", "))) \\Anders Hellström, Jan 23 2017
(PARI) list(lim)=my(v=List()); forprime(p=3, lim, if(isprime((p+7)/2), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 11 2008
STATUS
approved