login
A345916
Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum <= 0.
25
0, 3, 5, 9, 10, 13, 15, 17, 18, 23, 25, 29, 33, 34, 36, 39, 41, 43, 45, 46, 49, 50, 53, 55, 57, 58, 61, 63, 65, 66, 68, 71, 75, 77, 78, 81, 85, 89, 90, 95, 97, 98, 103, 105, 109, 113, 114, 119, 121, 125, 129, 130, 132, 135, 136, 139, 141, 142, 145, 147, 149
OFFSET
1,2
COMMENTS
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The sequence of terms together with the corresponding compositions begins:
0: ()
3: (1,1)
5: (2,1)
9: (3,1)
10: (2,2)
13: (1,2,1)
15: (1,1,1,1)
17: (4,1)
18: (3,2)
23: (2,1,1,1)
25: (1,3,1)
29: (1,1,2,1)
33: (5,1)
34: (4,2)
36: (3,3)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}];
Select[Range[0, 100], sats[stc[#]]<=0&]
CROSSREFS
The version for Heinz numbers of partitions is A000290.
These compositions are counted by A058622.
These are the positions of terms <= 0 in A344618.
The opposite (k >= 0) version is A345914.
The version for unreversed alternating sum is A345915.
The strictly negative (k < 0) version is A345920.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.
Sequence in context: A153710 A230385 A269399 * A175468 A286065 A316296
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 08 2021
STATUS
approved