login
A345915
Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum <= 0.
25
0, 3, 6, 10, 12, 13, 15, 20, 24, 25, 27, 30, 36, 40, 41, 43, 46, 48, 49, 50, 51, 53, 54, 55, 58, 60, 61, 63, 72, 80, 81, 83, 86, 92, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 111, 116, 120, 121, 123, 126, 136, 144, 145, 147, 150, 156, 160, 161, 162, 163
OFFSET
1,2
COMMENTS
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The sequence of terms together with the corresponding compositions begins:
0: ()
3: (1,1)
6: (1,2)
10: (2,2)
12: (1,3)
13: (1,2,1)
15: (1,1,1,1)
20: (2,3)
24: (1,4)
25: (1,3,1)
27: (1,2,1,1)
30: (1,1,1,2)
36: (3,3)
40: (2,4)
41: (2,3,1)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Select[Range[0, 100], ats[stc[#]]<=0&]
CROSSREFS
The version for Heinz numbers of partitions is A028260 (counted by A027187).
These compositions are counted by A058622.
These are the positions of terms <= 0 in A124754.
The reverse-alternating version is A345916.
The opposite (k >= 0) version is A345917.
The strictly negative (k < 0) version is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.
Sequence in context: A282876 A363775 A261662 * A050107 A120068 A015875
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 08 2021
STATUS
approved