login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139691
Discriminants of the normalized general quintic polynomials with nonnegative coefficients.
1
0, 12, 40, 48, 49, 69, 84, 92, 93, 117, 124, 125, 128, 132, 144, 161, 176, 184, 189, 217, 229, 240, 245, 256, 257, 272, 312, 320, 324, 332, 333, 340, 348, 392, 400, 432, 448, 456, 472, 512, 549, 588, 592, 605, 609, 688, 697, 708, 725, 761, 804, 832, 836, 837
OFFSET
1,2
COMMENTS
Possible discriminants of the general normalized quintic polynomial x^5+b*x^4+c*x^3+d*x^2+e*x+f with b,c,d,e,f>=0
REFERENCES
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
MATHEMATICA
aa = {}; a = 1; Do[Print[f]; Do[Do[Do[Do[k = b^2 c^2 d^2 e^2 - 4 a c^3 d^2 e^2 - 4 b^3 d^3 e^2 + 18 a b c d^3 e^2 - 27 a^2 d^4 e^2 - 4 b^2 c^3 e^3 + 16 a c^4 e^3 + 18 b^3 c d e^3 - 80 a b c^2 d e^3 - 6 a b^2 d^2 e^3 + 144 a^2 c d^2 e^3 - 27 b^4 e^4 + 144 a b^2 c e^4 - 128 a^2 c^2 e^4 - 192 a^2 b d e^4 + 256 a^3 e^5 - 4 b^2 c^2 d^3 f + 16 a c^3 d^3 f + 16 b^3 d^4 f - 72 a b c d^4 f + 108 a^2 d^5 f + 18 b^2 c^3 d e f - 72 a c^4 d e f - 80 b^3 c d^2 e f + 356 a b c^2 d^2 e f + 24 a b^2 d^3 e f - 630 a^2 c d^3 e f - 6 b^3 c^2 e^2 f + 24 a b c^3 e^2 f + 144 b^4 d e^2 f - 746 a b^2 c d e^2 f + 560 a^2 c^2 d e^2 f + 1020 a^2 b d^2 e^2 f - 36 a b^3 e^3 f + 160 a^2 b c e^3 f - 1600 a^3 d e^3 f - 27 b^2 c^4 f^2 + 108 a c^5 f^2 + 144 b^3 c^2 d f^2 - 630 a b c^3 d f^2 - 128 b^4 d^2 f^2 + 560 a b^2 c d^2 f^2 + 825 a^2 c^2 d^2 f^2 - 900 a^2 b d^3 f^2 - 192 b^4 c e f^2 + 1020 a b^2 c^2 e f^2 - 900 a^2 c^3 e f^2 + 160 a b^3 d e f^2 - 2050 a^2 b c d e f^2 + 2250 a^3 d^2 e f^2 - 50 a^2 b^2 e^2 f^2 + 2000 a^3 c e^2 f^2 + 256 b^5 f^3 - 1600 a b^3 c f^3 + 2250 a^2 b c^2 f^3 + 2000 a^2 b^2 d f^3 - 3750 a^3 c d f^3 - 2500 a^3 b e f^3 + 3 125 a^4 f^4; If[k > 0 && k < 1000, AppendTo[aa, k]], {b, 0, 30}], {c, 0, 30}], {d, 0, 30}], {e, 0, 30}], {f, 0, 30}]; Union[aa] (*Artur Jasinski*)
CROSSREFS
Sequence in context: A119094 A226348 A359023 * A292544 A345924 A114815
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 29 2008
STATUS
approved