login
A363125
Number of integer partitions of n with a unique non-mode.
6
0, 0, 0, 0, 1, 3, 3, 8, 9, 13, 18, 24, 24, 36, 41, 45, 57, 68, 72, 87, 95, 105, 131, 136, 149, 164, 199, 203, 232, 246, 276, 298, 335, 347, 409, 399, 467, 488, 567, 569, 636, 662, 757, 767, 878, 887, 1028, 1030, 1168, 1181, 1342, 1388, 1558, 1570, 1789, 1791
OFFSET
0,6
COMMENTS
A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.
EXAMPLE
The a(4) = 1 through a(9) = 13 partitions:
(211) (221) (411) (322) (332) (441)
(311) (3111) (331) (422) (522)
(2111) (21111) (511) (611) (711)
(2221) (5111) (3222)
(4111) (22211) (6111)
(22111) (41111) (22221)
(31111) (221111) (32211)
(211111) (311111) (33111)
(2111111) (51111)
(411111)
(2211111)
(3111111)
(21111111)
MATHEMATICA
nmsi[ms_]:=Select[Union[ms], Count[ms, #]<Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n], Length[nmsi[#]]==1&]], {n, 0, 30}]
CROSSREFS
For middle parts instead of non-modes we have A238478, complement A238479.
For modes instead of non-modes we have A362608, complement A362607.
For co-modes instead of non-modes we have A362610, complement A362609.
The complement is counted by A363124.
For non-co-modes instead of non-modes we have A363129, complement A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.
Sequence in context: A368738 A135477 A182473 * A335602 A092549 A260890
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2023
STATUS
approved