The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141260 a(n) = 1 if n == {0,1,3,4,5,7,9,11} mod 12, otherwise a(n) = 0. 3
 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also characteristic function of A141259. Let S be the period-3 sequence (1,0,1,1,0,1,1,0,1,...); create a hole after every (1,0,1) segment getting 1,0,1__1,0,1__1,0,1__1,0,1,__1,0,1___,... Then insert successive terms of S into the holes. In more detail: define S to be 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1,0,1___... If we fill the holes with S we get A141260: 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, ........1.........0.........1.........1.........0.......1.........1.........0... - the result is 1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.0.1.... = A141260 But instead, if we define T recursively by filling the holes in S with the terms of T itself, we get A035263: 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, ........1.........0.........1.........1.........1.......0.........1.........0... - the result is 1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.1.1.0.1.0.1..0..1.1.1..0..1.0.1.. = A035263 Period 12: 1,0,1,1,1,0,1,0,1,0,1,1. [From Paolo P. Lava, Feb 11 2009] LINKS FORMULA a(n)=(1/396)*{4*[(n-1) mod 12]+4*(n mod 12)-29*[(n+1) mod 12]+37*[(n+2) mod 12]-29*[(n+3) mod 12]+37*[(n+4) mod 12]-29*[(n+5) mod 12]+37*[(n+6) mod 12]+4*[(n+7) mod 12]+4*[(n+8) mod 12]-29*[(n+9) mod 12]+37*[(n+10) mod 12]}, with n>=1 [From Paolo P. Lava, Feb 11 2009] EXAMPLE a(16) = 1 since 16 == 4 mod 12. MATHEMATICA Table[If[MemberQ[{0, 1, 3, 4, 5, 7, 9, 11}, Mod[n, 12]], 1, 0], {n, 110}] (* or *) PadRight[{}, 110, {1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1}] (* Harvey P. Dale, Mar 29 2015 *) CROSSREFS Cf. A141259. Note that A035263 has a similar definition, but is a different sequence. Sequence in context: A259024 A323045 A104106 * A029883 A035263 A089045 Adjacent sequences:  A141257 A141258 A141259 * A141261 A141262 A141263 KEYWORD nonn AUTHOR Gary W. Adamson, Jun 18 2008 EXTENSIONS Edited by N. J. A. Sloane, Jun 28 2008, Jan 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 11:15 EDT 2021. Contains 342845 sequences. (Running on oeis4.)