The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141259 a(n) == {0,1,3,4,5,7,9,11} mod 12; n>0. 2
 1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 33, 35, 36, 37, 39, 40, 41, 43, 45, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 79, 81, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A141260 = characteristic function of A141259 such that A141260(n) = 1 if n is in A141259; 0 otherwise. First difference is periodic: 2,1,1,2,2,2,1,1. [Paolo P. Lava, Feb 11 2009] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-1). FORMULA a(n) = {0,1,3,4,5,7,9,11} mod 12; n>0. a(n) = (1/56)*Sum{k=0..n-1}{3*(k mod 8)+10*[(k+1) mod 8]+3*[(k+2) mod 8]+3*[(k+3) mod 8]-4*[(k+4) mod 8]+3*[(k+5) mod 8]+10*[(k+6) mod 8]-4*[(k+7) mod 8]}, with n>=1 [Paolo P. Lava, Feb 11 2009] G.f. (1+x)*(x^5+x^3+1) / ( (x^2+1)*(x^4+1)*(x-1)^2 ). - R. J. Mathar, Nov 21 2011 EXAMPLE a(16) = 24, == 0 mod 12. MATHEMATICA Select[Range[200], MemberQ[{0, 1, 3, 4, 5, 7, 9, 11}, Mod[#, 12]]&] (* Harvey P. Dale, Feb 20 2014 *) PROG (MAGMA) [n: n in [1..100]|n mod 12 in {0, 1, 3, 4, 5, 7, 9, 11}]; // Vincenzo Librandi, Feb 22 2014 CROSSREFS Cf. A141260. Sequence in context: A260401 A003159 A187691 * A047501 A256455 A035242 Adjacent sequences:  A141256 A141257 A141258 * A141260 A141261 A141262 KEYWORD nonn AUTHOR Gary W. Adamson, Jun 18 2008 EXTENSIONS More terms from Harvey P. Dale, Feb 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 05:22 EDT 2020. Contains 333073 sequences. (Running on oeis4.)