login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224982
Numbers that are the sum of exactly 7 distinct nonzero squares.
8
140, 155, 168, 172, 179, 185, 188, 191, 195, 196, 200, 203, 204, 205, 211, 212, 215, 217, 219, 220, 224, 225, 227, 230, 231, 232, 233, 235, 236, 239, 240, 243, 244, 245, 246, 247, 248, 251, 252, 254, 256, 257, 259, 260, 263, 264, 265, 267, 268, 269, 270, 271
OFFSET
1,1
LINKS
Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, Sums of distinct squares, Acta Arithmetica 67 (1994), pp. 349-380.
EXAMPLE
a(1) = 1 + 4 + 9 + 16 + 25 + 36 + 49 = 140 = A000330(7);
a(2) = 1 + 4 + 9 + 16 + 25 + 36 + 64 = 155;
a(3) = 1 + 4 + 9 + 16 + 25 + 49 + 64 = 168;
a(4) = 1 + 4 + 9 + 16 + 25 + 36 + 81 = 172;
a(5) = 1 + 4 + 9 + 16 + 36 + 49 + 64 = 179.
MATHEMATICA
nmax = 1000;
S[n_] := S[n] = Union[Total /@ Subsets[
Range[Floor[Sqrt[n]]]^2, {7}]][[1 ;; nmax]];
S[nmax];
S[n = nmax + 1];
While[S[n] != S[n - 1], n++];
S[n] (* Jean-François Alcover, Nov 20 2021 *)
PROG
(Haskell)
a224982 n = a224982_list !! (n-1)
a224982_list = filter (p 7 $ tail a000290_list) [1..] where
p k (q:qs) m = k == 0 && m == 0 ||
q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 22 2013
STATUS
approved