The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224983 Numbers that are the sum of exactly 8 distinct nonzero squares. 8
 204, 221, 236, 240, 249, 255, 260, 261, 268, 269, 272, 276, 279, 281, 284, 285, 288, 289, 293, 295, 296, 299, 300, 303, 305, 306, 309, 311, 312, 316, 317, 320, 321, 323, 324, 325, 326, 327, 329, 332, 333, 335, 336, 337, 338, 339, 340, 341, 344, 345, 347, 348 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, Sums of distinct squares, Acta Arithmetica 67 (1994), pp. 349-380. Index entries for sequences related to sums of squares EXAMPLE a(1) = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 = 204 = A000330(8); a(2) = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 81 = 221; a(3) = 1 + 4 + 9 + 16 + 25 + 36 + 64 + 81 = 236; a(4) = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 100 = 240; a(5) = 1 + 4 + 9 + 16 + 25 + 49 + 64 + 81 = 249. MATHEMATICA nmax = 1000; S[n_] := S[n] = Union[Total /@ Subsets[ Range[Floor[Sqrt[n]]]^2, {8}]][[1 ;; nmax]]; S[nmax]; S[n = nmax + 1]; While[S[n] != S[n - 1], n++]; S[n] (* Jean-François Alcover, Nov 20 2021 *) PROG (Haskell) a224983 n = a224983_list !! (n-1) a224983_list = filter (p 8 \$ tail a000290_list) [1..] where p k (q:qs) m = k == 0 && m == 0 || q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m) CROSSREFS Cf. A003995, A004431, A004432, A004433, A004434, A224981, A224982, A000290. Sequence in context: A348823 A198722 A198913 * A138605 A260975 A271643 Adjacent sequences: A224980 A224981 A224982 * A224984 A224985 A224986 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 22:13 EST 2024. Contains 370237 sequences. (Running on oeis4.)