login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004433
Numbers that are the sum of 4 distinct nonzero squares: of form w^2+x^2+y^2+z^2 with 0<w<x<y<z.
17
30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137
OFFSET
1,1
FORMULA
{n: A025443(n) >=1}. Union of A025386 and A025376. - R. J. Mathar, Jun 15 2018
EXAMPLE
30 = 1^2+2^2+3^2+4^2.
MATHEMATICA
data = Flatten[ DeleteCases[ FindInstance[ w^2 + x^2 + y^2 + z^2 == # && 0 < w < x < y < z < #, {w, x, y, z}, Integers] & /@ Range[137], {}], 1]; w^2 + x^2 + y^2 + z^2 /. data (* Ant King, Oct 17 2010 *)
Select[Union[Total[#^2]&/@Subsets[Range[10], {4}]], #<=137&] (* Harvey P. Dale, Jul 03 2011 *)
PROG
(Haskell)
a004433 n = a004433_list !! (n-1)
a004433_list = filter (p 4 $ tail a000290_list) [1..] where
p k (q:qs) m = k == 0 && m == 0 ||
q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
-- Reinhard Zumkeller, Apr 22 2013
(PARI) list(lim)=my(v=List()); lim\=1; for(z=4, sqrtint(lim\4), for(y=3, min(sqrtint((lim-z^2)\3), z-1), for(x=2, min(sqrtint((lim-y^2-z^2)\2), y-1), for(w=1, min(sqrtint(lim-x^2-y^2-z^2), x-1), listput(v, w^2+x^2+y^2+z^2))))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017
KEYWORD
nonn,easy,nice
STATUS
approved