login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of 4 distinct nonzero squares: of form w^2+x^2+y^2+z^2 with 0<w<x<y<z.
17

%I #31 Aug 02 2023 07:11:56

%S 30,39,46,50,51,54,57,62,63,65,66,70,71,74,75,78,79,81,84,85,86,87,90,

%T 91,93,94,95,98,99,102,105,106,107,109,110,111,113,114,116,117,118,

%U 119,120,121,122,123,125,126,127,129,130,131,133,134,135,137

%N Numbers that are the sum of 4 distinct nonzero squares: of form w^2+x^2+y^2+z^2 with 0<w<x<y<z.

%H T. D. Noe, <a href="/A004433/b004433.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%F {n: A025443(n) >=1}. Union of A025386 and A025376. - _R. J. Mathar_, Jun 15 2018

%e 30 = 1^2+2^2+3^2+4^2.

%t data = Flatten[ DeleteCases[ FindInstance[ w^2 + x^2 + y^2 + z^2 == # && 0 < w < x < y < z < #, {w, x, y, z}, Integers] & /@ Range[137], {}], 1]; w^2 + x^2 + y^2 + z^2 /. data (* _Ant King_, Oct 17 2010 *)

%t Select[Union[Total[#^2]&/@Subsets[Range[10],{4}]],#<=137&] (* _Harvey P. Dale_, Jul 03 2011 *)

%o (Haskell)

%o a004433 n = a004433_list !! (n-1)

%o a004433_list = filter (p 4 $ tail a000290_list) [1..] where

%o p k (q:qs) m = k == 0 && m == 0 ||

%o q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)

%o -- _Reinhard Zumkeller_, Apr 22 2013

%o (PARI) list(lim)=my(v=List()); lim\=1; for(z=4,sqrtint(lim\4), for(y=3,min(sqrtint((lim-z^2)\3),z-1), for(x=2,min(sqrtint((lim-y^2-z^2)\2),y-1), for(w=1,min(sqrtint(lim-x^2-y^2-z^2),x-1), listput(v,w^2+x^2+y^2+z^2))))); Set(v) \\ _Charles R Greathouse IV_, Feb 07 2017

%Y Cf. A001944, A001995, A003995, A004431, A004432, A004434, A224981, A224982, A224983, A000290.

%K nonn,easy,nice

%O 1,1

%A _N. J. A. Sloane_