login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325449 Psi-untouchable numbers: impossible values for A306927(n) = A001615(n) - n. 1
30, 38, 58, 60, 66, 94, 98, 102, 118, 120, 132, 138, 146, 158, 174, 178, 188, 190, 204, 206, 222, 238, 240, 246, 262, 264, 276, 278, 282, 290, 292, 298, 306, 318, 322, 326, 338, 348, 354, 374, 380, 390, 398, 402, 406, 408, 426, 430, 444, 458, 462, 474, 476, 478 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Analogous to untouchable numbers (A005114) with Dedekind psi function (A001615) instead of the sum of divisors function, sigma (A000203).

te Riele named these numbers psi_1-untouchable. He calculated the first 2896 terms (terms below 20000). He proved that this sequence is infinite by showing that all the numbers of the form 2^k*3*5 (k >= 1, A110286(k) except for k = 0) are psi-untouchables.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

H. J. J. te Riele, A theoretical and computational study of generalized aliquot sequences (Doctoral thesis), MCT-74, Mathematisch Centrum, Amsterdam, 1976, Chapter 9.

MATHEMATICA

f[1] = 0; f[n_] := n*(Times @@ (1 + 1/FactorInteger[n][[;; , 1]]) - 1); m = 300; v = Table[0, {m}]; Do[j = f[k]; If[2 <= j <= m, v[[j]]++], {k, 1, m^2}]; Rest[Position[v, _?(# == 0 &)] // Flatten]

CROSSREFS

Cf. A001615, A005114, A110286, A306927.

Sequence in context: A257439 A298366 A130038 * A243301 A001995 A004433

Adjacent sequences:  A325446 A325447 A325448 * A325450 A325451 A325452

KEYWORD

nonn

AUTHOR

Amiram Eldar, Sep 06 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 05:55 EST 2019. Contains 329388 sequences. (Running on oeis4.)