The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223727 Numbers which are a sum of four distinct nonzero squares where the summands have no common factor > 1. 2
 30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137, 138, 139, 140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A primitive representation of a number m as a sum of four distinct nonzero squares is determined from a quadruple [s(1), s(2), s(3), s(4)] of integers with 0 < s(1) < s(2) < s(3) < s(4) with gcd(s(1),s(2),s(3),s(4)) = 1, and m = sum(s(j)^2, j=1..4). If m has such a primitive representation then k^2*m, with integer k > 0, has trivially a non-primitive representation. Therefore primitive representations are of interest. For the multiplicities see A223728. This sequence is a proper subset of A004433. The first entry of A004433 missing here is 120 = A004433(43). The first common entry with different multiplicity is A004433(72) = 156 = a(71) with two primitive representations with quadruples [1, 3, 5, 11] and [1, 5, 7, 9]. [2, 4, 6, 10] = 2*[1, 2, 3, 5]is a non-primitive representation due to 156 = 4*39. LINKS Table of n, a(n) for n=1..58. FORMULA This sequence are the increasingly ordered members of the set {m an integer | m = sum(s(j)^2, j=1..4), with 0 < s(1) < s(2) < s(3) < s(4) and gcd(s(1),s(2),s(3),s(4)) = 1}. EXAMPLE a(1) = 30 because the numbers 0,...,29 have no representation as a sum of four distinct nonzero squares, and 30 has one representation given by the quadruple [1,2,3,4] which is primitive. a(16) = 78 has three such representations given by the quadruples [1, 2, 3, 8], [1, 4, 5, 6] and [2, 3, 4, 7] which are all primitive. Hence A223728(16) = 3. This is the first entry with more than one (primitive) representation. a(23) = 90 has multiplicity 2 = A223728 because there are two primitive quadruples [1, 2, 6, 7] and [1, 3, 4, 8]. a(71) = 156 has multiplicity A223728(71) = 2 (see a comment above). CROSSREFS Cf. A222949, A097203, A223728, A259058 (multiplicity >= 2 instances). Sequence in context: A243301 A001995 A004433 * A025376 A280640 A152616 Adjacent sequences: A223724 A223725 A223726 * A223728 A223729 A223730 KEYWORD nonn AUTHOR Wolfdieter Lang, Mar 27 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 13:47 EDT 2024. Contains 371689 sequences. (Running on oeis4.)