The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276029 Number of ways to transform a sequence of n ones and n twos to a single number by continually removing two numbers and replacing them with their sum modulo 3. 2
1, 4, 27, 228, 2226, 23778, 270693, 3229106, 39922172, 507680620, 6604676830, 87549425068, 1178880306174, 16086844260290, 222045139578443, 3095457073064120, 43529719213465854, 616853383573066504, 8801227720060618544, 126344910516550743232 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Originally this entry had a reference to a paper on the arXiv by Caleb Ji, Enumerative Properties of Posets Corresponding to a Certain Class of No Strategy Games, arXiv:1608.06025 [math.CO], 2016. However, this article has since been removed from the arXiv. - N. J. A. Sloane, Sep 07 2018
LINKS
FORMULA
a(n) = b(0, n, n) where f(a, b, c) is the number of ways to reach one number beginning with a zeros, b ones, and c twos.
Then f(a, b, c) = f_1 + f_2 + f_3 + f_4 where f_1 = f(a-1, b, c) if a>=2 or a, b >=1 or a,c >=1, f_2 = f(a, b-2, c+1) if b >= 2, f_3 = f(a, b+1, c-2) if c >= 2, and f_4 = f(a+1, b-1, c-1) if b, c >= 1, and each are 0 otherwise. Initial terms: f(a, b, c) = 1 for all 1 <= a+b+c <= 2, where a, b, c >= 0.
MAPLE
b:= proc(x, y, z) option remember;
`if`(x+y+z=1, 1, `if`(y>0 and z>0, b(x+1, y-1, z-1), 0)+
`if`(x>1 or x>0 and y>0 or x>0 and z>0, b(x-1, y, z), 0)+
`if`(y>1, b(x, y-2, z+1), 0)+`if`(z>1, b(x, y+1, z-2), 0))
end:
a:= n-> b(0, n, n):
seq(a(n), n=1..35); # Alois P. Heinz, Aug 18 2016
MATHEMATICA
b[x_, y_, z_] := b[x, y, z] = If[x + y + z == 1, 1, If[y > 0 && z > 0, b[x + 1, y - 1, z - 1], 0] + If[x > 1 || x > 0 && y > 0 || x > 0 && z > 0, b[x - 1, y, z], 0] + If[y > 1, b[x, y - 2, z + 1], 0] + If[z > 1, b[x, y + 1, z - 2], 0]];
a[n_] := b[0, n, n];
Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A317103 A341962 A354588 * A160883 A362274 A328978
KEYWORD
nonn
AUTHOR
Caleb Ji, Aug 17 2016
EXTENSIONS
More terms from Alois P. Heinz, Aug 18 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 17:21 EDT 2024. Contains 372738 sequences. (Running on oeis4.)