Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #74 Jul 16 2021 04:01:09
%S 1,1,1,2,1,1,1,2,2,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1,
%T 1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1
%N a(1)=1; for n>1, a(n) gives number of ways to write n as n = x^y, 2 <= x, 1 <= y.
%C This function depends only on the prime signature of n. - _Franklin T. Adams-Watters_, Mar 10 2006
%C a(n) is the number of perfect divisors of n. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) > 1 for perfect powers n = A001597(m) for m > 2. - _Jaroslav Krizek_, Jan 23 2010
%C Also the number of uniform perfect integer partitions of n - 1. An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset. The Heinz numbers of these partitions are given by A326037. The a(16) = 3 partitions are: (8,4,2,1), (4,4,4,1,1,1), (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). - _Gus Wiseman_, Jun 07 2019
%C The record values occur at 1 and at 2^A002182(n) for n > 1. - _Amiram Eldar_, Nov 06 2020
%H N. J. A. Sloane, <a href="/A089723/b089723.txt">Table of n, a(n) for n = 1..20000</a>
%H Solomon W. Golomb, <a href="http://dx.doi.org/10.1016/0022-314X(73)90047-4">A new arithmetic function of combinatorial significance</a>, J. Number Theory, Vol. 5, No. 3 (1973), pp. 218-223. <a href="http://adsabs.harvard.edu/abs/1973JNT.....5..218G">1973JNT.....5..218G</a>
%H Jan Mycielski, <a href="http://matwbn.icm.edu.pl/ksiazki/cm/cm2/cm2140.pdf">Sur les représentations des nombres naturels par des puissances à base et exposant naturels</a>, Colloquium Mathematicum, Vol. 2 (1951), pp. 254-260. See gamma(n).
%H N. J. A. Sloane, <a href="/A278028/a278028.txt">Maple programs for A007916, A278028, A278029, A052409, A089723, A277564</a>
%F If n = Product p_i^e_i, a(n) = d(gcd(<e_i>)). - _Franklin T. Adams-Watters_, Mar 10 2006
%F Sum_{n=1..m} a(n) = A255165(m) + 1. - _Richard R. Forberg_, Feb 16 2015
%F Sum_{n>=2} a(n)/n^s = Sum_{n>=2} 1/(n^s-1) = Sum_{k>=1} (zeta(s*k)-1) for all real s with Re(s) > 1 (Golomb, 1973). - _Amiram Eldar_, Nov 06 2020
%F For n > 1, a(n) = Sum_{i=1..floor(n/2)} floor(n^(1/i))-floor((n-1)^(1/i)). - _Wesley Ivan Hurt_, Dec 08 2020
%F Sum_{n>=1} (a(n)-1)/n = 1 (Mycielski, 1951). - _Amiram Eldar_, Jul 15 2021
%e 144 = 2^4 * 3^2, gcd(4,2) = 2, d(2) = 2, so a(144) = 2. The representations are 144^1 and 12^2.
%p with(numtheory):
%p A089723 := proc(n) local t1,t2,g,j;
%p if n=1 then 1 else
%p t1:=ifactors(n)[2]; t2:=nops(t1); g := t1[1][2];
%p for j from 2 to t2 do g:=gcd(g,t1[j][2]); od:
%p tau(g); fi; end;
%p [seq(A089723(n),n=1..100)]; # _N. J. A. Sloane_, Nov 10 2016
%t Table[DivisorSigma[0, GCD @@ FactorInteger[n][[All, 2]]], {n, 100}] (* _Gus Wiseman_, Jun 12 2017 *)
%o (PARI) a(n) = if (n==1, 1, numdiv(gcd(factor(n)[,2]))); \\ _Michel Marcus_, Jun 13 2017
%o (Python)
%o from math import gcd
%o from sympy import factorint, divisor_sigma
%o def a(n):
%o if n == 1: return 1
%o e = list(factorint(n).values())
%o g = e[0]
%o for ei in e[1:]: g = gcd(g, ei)
%o return divisor_sigma(g, 0)
%o print([a(n) for n in range(1, 105)]) # _Michael S. Branicky_, Jul 15 2021
%Y Cf. A000005, A277564, A278028.
%Y Cf. A000961, A002033, A002182, A007916, A047966, A070941, A108917, A126796, A276024, A326035, A326036, A326037.
%K easy,nonn
%O 1,4
%A _Naohiro Nomoto_, Jan 07 2004