login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of divisors d of n such that d^k is not equal to n for any k >= 1.
3

%I #25 May 28 2017 09:15:46

%S 0,1,1,1,1,3,1,2,1,3,1,5,1,3,3,2,1,5,1,5,3,3,1,7,1,3,2,5,1,7,1,4,3,3,

%T 3,7,1,3,3,7,1,7,1,5,5,3,1,9,1,5,3,5,1,7,3,7,3,3,1,11,1,3,5,3,3,7,1,5,

%U 3,7,1,11,1,3,5,5,3,7,1,9,2,3,1,11,3,3,3,7,1,11,3,5,3,3,3,11,1,5,5,7

%N a(n) is the number of divisors d of n such that d^k is not equal to n for any k >= 1.

%H Antti Karttunen, <a href="/A178638/b178638.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000005(n) - A089723(n).

%F a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k-1, a(p^k) = k+1-A000005(k), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

%e For n = 16, set of such divisors is {1, 8}; a(16) = 2.

%t Table[DivisorSum[n, 1 &, If[# > 1, #^IntegerExponent[n, #], 1] != n &], {n, 100}] (* _Michael De Vlieger_, May 27 2017 *)

%o (PARI)

%o A286561(n,k) = if(1==k, 1, valuation(n, k));

%o A178638(n) = sumdiv(n,d,if((d^A286561(n,d))<>n,1,0)); \\ _Antti Karttunen_, May 26 - 27 2017

%o (PARI) a(n) = if(n==1, return(0)); my(f=factor(n), g = f[1, 2]); for(i=2, matsize(f)[1], g=gcd(g, f[i, 2])); numdiv(n) - numdiv(g) \\ _David A. Corneth_, May 27 2017

%Y Cf. A000005, A089723, A169594, A186643, A286561.

%K nonn

%O 1,6

%A _Jaroslav Krizek_, Dec 25 2010