OFFSET
1,2
COMMENTS
210 is the product of the smallest 4 primes.
Numbers k such that gcd(d(k^2), 210) = 1, where d(k) is the number of divisors of k (A000005).
Also numbers with no exponents = 1 mod 3, 2 mod 5, or 3 mod 7; also numbers whose square has a number of divisors coprime to 105. - Charles R Greathouse IV, Dec 08 2022
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..5000
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime} (Sum_{k=2..210, gcd(k-1,210)=1} p^(k/2))/(p^105-1) = 1.05981355805... . - Amiram Eldar, Dec 06 2022
MATHEMATICA
With[{nn = 2^20}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], CoprimeQ[DivisorSigma[0, #^2], 210] &]]
PROG
(PARI) is(n, f=factor(n))=if(n<32, return(n==1)); my(t=f[, 2]%105, N=19200959813818273241621521446046); for(i=1, #t, if(bittest(N, t[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Dec 03 2022
STATUS
approved