login
A307004
Numbers k such that phi^e(k) > phi^e(m) for all m < k, where phi^e(k) = A072911(k) is the number of divisors d of k such that d and k are exponentially coprime.
2
1, 8, 32, 128, 864, 2048, 3456, 7776, 31104, 279936, 497664, 1990656, 4478976, 17915904, 62208000, 97200000, 362797056, 559872000, 874800000, 1555200000, 6220800000, 13996800000, 55987200000, 349920000000, 895795200000, 1133740800000, 1399680000000, 4534963200000
OFFSET
1,2
COMMENTS
The corresponding record values of phi^e are 1, 2, 4, 6, 8, 10, 12, 16, 24, ... (see the link for more values).
REFERENCES
József Sándor, On an exponential totient function, Studia Univ. Babees-Bolyai, Math., Vol. 41 (1996), pp. 91-94.
LINKS
László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2004), pp. 285-294.
MATHEMATICA
f[n_] := Times@@EulerPhi[FactorInteger[n][[All, 2]]]; fm=0; s={}; Do[f1=f[n]; If[f1>fm, AppendTo[s, n]; fm=f1], {n, 1, 10^6}]; s
CROSSREFS
Sequence in context: A374159 A325839 A081654 * A264280 A264390 A253105
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 19 2019
STATUS
approved