Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 06 2024 14:33:21
%S 1,10,68,424,2576,15520,93248,559744,3358976,20154880,120931328,
%T 725592064,4353560576,26121379840,156728311808,940369936384,
%U 5642219749376,33853318758400,203119913074688,1218719479496704,7312316879077376,43873901278658560,263243407680339968
%N a(n) = 2*6^n - 2^n.
%C Binomial transform of A081655.
%C Inverse binomial transform of A081657.
%H Vincenzo Librandi, <a href="/A081656/b081656.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-12).
%F G.f.: (1+2*x)/((1-6*x)(1-2*x)).
%F E.g.f.: 2*exp(6*x) - exp(2*x).
%F a(0)=1, a(2)=10; for n>2, a(n) = 8*a(n-1) - 12*a(n-2). - _Vincenzo Librandi_, Aug 10 2013
%t CoefficientList[Series[(1 + 2 x) / ((1 - 6 x) (1 - 2 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 10 2013 *)
%t Table[2*6^n-2^n,{n,0,20}] (* or *) LinearRecurrence[{8,-12},{1,10},20] (* _Harvey P. Dale_, Mar 17 2019 *)
%o (Magma) [2*6^n-2^n: n in [0..30]]; // _Vincenzo Librandi_, Aug 10 2013
%o (PARI) a(n)=2*6^n-2^n \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Third column of array A094424.
%Y Cf. A081655, A081657.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Mar 26 2003