login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093130
Third binomial transform of Fibonacci(3n).
2
0, 2, 20, 160, 1200, 8800, 64000, 464000, 3360000, 24320000, 176000000, 1273600000, 9216000000, 66688000000, 482560000000, 3491840000000, 25267200000000, 182835200000000, 1323008000000000, 9573376000000000
OFFSET
0,2
FORMULA
G.f.: 2*x/(1-10*x+20*x^2).
a(n) = ((5+sqrt(5))^n - (5-sqrt(5))^n)/sqrt(5).
a(n) = 2^n*A093131(n).
a(0)=0, a(1)=2, a(n) = 10*a(n-1) - 20*a(n-2). - Harvey P. Dale, Jun 24 2015
a(2*n) = 2^(2*n)*5^n*Fibonacci(2*n), a(2*n+1) = 2^(2*n+1)*5^n*Lucas(2*n+1). - G. C. Greubel, Dec 27 2019
MAPLE
seq(coeff(series(2*x/(1-10*x+20*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 27 2019
MATHEMATICA
LinearRecurrence[{10, -20}, {0, 2}, 20] (* Harvey P. Dale, Jun 24 2015 *)
Table[If[EvenQ[n], 2^n*5^(n/2)*Fibonacci[n], 2^n*5^((n-1)/2)*LucasL[n]], {n, 0, 20}] (* G. C. Greubel, Dec 27 2019 *)
PROG
(PARI) my(x='x+O('x^20)); concat([0], Vec(2*x/(1-10*x+20*x^2))) \\ G. C. Greubel, Dec 27 2019
(Magma) I:=[0, 2]; [n le 2 select I[n] else 10*Self(n-1) - 20*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2019
(Sage)
def A093130_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 2*x/(1-10*x+20*x^2) ).list()
A093130_list(20) # G. C. Greubel, Dec 27 2019
(GAP) a:=[0, 2];; for n in [3..20] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Dec 27 2019
CROSSREFS
Sequence in context: A093302 A248337 A270444 * A043029 A164944 A144485
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 23 2004
STATUS
approved