login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144485
a(n) = (3n + 2)*binomial(3n + 1,n).
3
2, 20, 168, 1320, 10010, 74256, 542640, 3922512, 28120950, 200300100, 1419269280, 10013421600, 70394353848, 493362138080, 3448674255840, 24051721745568, 167405449649550, 1163116182943260, 8068463611408200, 55891260077406600
OFFSET
0,1
LINKS
Ömer Eğecioğlu, Timothy Redmond, and Charles Ryavec, Almost product evaluation of Hankel Determinants, The Electronic Journal of Combinatorics, Vol. 15, No. 1 (2008), #R6; arXiv preprint, arXiv:0704.3398 [math.CO], 2007.
FORMULA
a(n) = (3n+2)*A045721(n). - R. J. Mathar, Feb 01 2014
a(n) = 2*A090763(n). - Alois P. Heinz, Feb 01 2014
From Amiram Eldar, Dec 07 2024: (Start)
a(n) = 2 * (n+1) * A005809(n+1) / 3.
Sum_{n>=0} 1/a(n) = (3/2) * A210453. (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 2,
3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 01 2014
MATHEMATICA
a[k_] = (3k + 2)Binomial[3k + 1, k]; Table[a[k], {k, 0, 30}]
PROG
(Magma) [(3*n+2)*Binomial(3*n+1, n): n in [0..20]]; // Vincenzo Librandi, Feb 14 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Oct 12 2008
STATUS
approved