OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Ömer Eğecioğlu, Timothy Redmond, and Charles Ryavec, Almost product evaluation of Hankel Determinants, The Electronic Journal of Combinatorics, Vol. 15, No. 1 (2008), #R6; arXiv preprint, arXiv:0704.3398 [math.CO], 2007.
FORMULA
a(n) = (3n+2)*A045721(n). - R. J. Mathar, Feb 01 2014
a(n) = 2*A090763(n). - Alois P. Heinz, Feb 01 2014
From Amiram Eldar, Dec 07 2024: (Start)
a(n) = 2 * (n+1) * A005809(n+1) / 3.
Sum_{n>=0} 1/a(n) = (3/2) * A210453. (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 2,
3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 01 2014
MATHEMATICA
a[k_] = (3k + 2)Binomial[3k + 1, k]; Table[a[k], {k, 0, 30}]
PROG
(Magma) [(3*n+2)*Binomial(3*n+1, n): n in [0..20]]; // Vincenzo Librandi, Feb 14 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Oct 12 2008
STATUS
approved