login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105493
Number of partitions of {1,...,n} containing 3 strings of 3 consecutive integers such that only v-strings of consecutive integers can appear in a block, where v = 1,2,3.
4
2, 20, 170, 1340, 10375, 80652, 636990, 5143740, 42613980, 362863600, 3178544754, 28650249848
OFFSET
9,1
COMMENTS
Partitions enumerated by A105485 in which the maximal length of consecutive integers in a block is 3.
REFERENCES
A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463
LINKS
FORMULA
a(n)=Sum(w(n, k, 3), k=1...n), where w(n, k, 3) is the case r=3 of w(n, k, r) given by w(m, k, r)=w(m-1, k-1, r)+(k-1)w(m-1, k, r)+w(m-2, k-1, r)+(k-1)w(m-2, k, r) +w(m-3, k-1, r-1)+(k-1)w(m-3, k, r-1) r=0, 1, ..., floor(n/3), k=1, 2, ..., n-2r, w(n, k, 0)=sum(binomial(n-j, j)*S2(n-j-1, k-1), j=0..floor(n/2)).
EXAMPLE
a(9)=2, the enumerated partitions are 123/789/456, 123/456/789.
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Augustine O. Munagi, Apr 11 2005
STATUS
approved