login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105491 Number of partitions of {1...n} containing 5 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly five 2-strings. 3
15, 312, 4263, 49112, 521640, 5329044, 53580450, 537427440, 5422899339, 55344162874, 573270663966, 6040762924560, 64851119605636, 709986204480672, 7931189102016852, 90430835147203728, 1052534895931584828 (list; graph; refs; listen; history; text; internal format)
OFFSET

10,1

COMMENTS

Number of partitions enumerated by A105482 in which the maximal length of consecutive integers in a block is 2.

With offset 5t, number of partitions of {1,...,N} containing 5 detached strings of t consecutive integers, where N=n+5j, t=2+j, j = 0,1,2,..., i.e., partitions of {1,...,N} in which only v-strings of consecutive integers can appear in a block, where v=1 or v=t and there are exactly five t-strings.

REFERENCES

A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.

LINKS

Table of n, a(n) for n=10..26.

A. O. Munagi, Set Partitions with Successions and Separations,IJMMS 2005:3 (2005),451-463.

FORMULA

a(n)=binomial(n-5, 5)*Bell(n-6), which is the case r=5 in the general case of r pairs, d(n, r)=binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n, r, t)=binomial(n-r*(t-1), r)*B(n-r*(t-1)-1).

EXAMPLE

a(10)=15; the enumerated 15 partitions of {1,...,10} with 5 detached pairs of consecutive integers include (1,2,5,6,9,10)(3,4,7,8) and (1,2,9,10)(3,4,7,8)(5,6).

MAPLE

seq(binomial(n-5, 5)*combinat[bell](n-6), n=10..30);

CROSSREFS

Cf. A105482, A105490, A105487.

Sequence in context: A051691 A247238 A135390 * A158533 A284070 A133766

Adjacent sequences:  A105488 A105489 A105490 * A105492 A105493 A105494

KEYWORD

easy,nonn

AUTHOR

Augustine O. Munagi, Apr 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 10:40 EST 2021. Contains 349437 sequences. (Running on oeis4.)