login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247238
a(n) = Stirling2(2*n+1, n).
4
1, 15, 301, 7770, 246730, 9321312, 408741333, 20415995028, 1144614626805, 71187132291275, 4864251308951100, 362262620784874680, 29206898819153109600, 2534474684137526739000, 235535731151727520125765, 23339590705557273894321960
OFFSET
1,2
LINKS
FORMULA
a(n) = A243227(n) / (n-1)!. - Vaclav Kotesovec, Nov 29 2014
a(n) ~ 2^(2*n+1/2) * n^(n+1/2) / (sqrt(Pi) * sqrt(1-c) * exp(n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - Vaclav Kotesovec, Nov 29 2014
O.g.f. Sum_{n>=1} n^(2*n+1) * x^n * exp(-n^2*x) / n! = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Oct 09 2023
EXAMPLE
O.g.f.: A(x) = x + 15*x^2 + 301*x^3 + 7770*x^4 + 246730*x^5 + 9321312*x^6 + ... where A(x) = 1^3*x*exp(-1^2*x) + 2^5*exp(-2^2*x)*x^2/2! + 3^7*exp(-3^2*x)*x^3/3! + 4^9*exp(-4^2*x)*x^4/4! + 5^11*exp(-5^2*x)*x^5/5! + ...
MATHEMATICA
Table[StirlingS2[2*n+1, n], {n, 1, 20}] (* Vaclav Kotesovec, Nov 29 2014 *)
PROG
(PARI) vector(50, n, stirling(2*n+1, n, 2)) \\ Colin Barker, Nov 28 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 28 2014
STATUS
approved