login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243227
G.f.: Sum_{n>=0} n^(2*n) * x^n / (1 + n^2*x)^n.
2
1, 1, 15, 602, 46620, 5921520, 1118557440, 294293759760, 102896614941120, 46150861752777600, 25832386565857872000, 17651395149921751680000, 14460364581345685626624000, 13990151265412450143375360000, 15782226575197809064309171200000, 20533602558350213132577801792768000
OFFSET
0,3
COMMENTS
Compare to: Sum_{n>=0} n^n * x^n / (1 + n*x)^n = 1 + Sum_{n>=1} (n+1)!/2 * x^n.
FORMULA
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n-1,k) * (k+1)^(2*n) for n>0 with a(0)=1.
a(n) = (n-1)! * Stirling2(2*n+1, n) for n>0 with a(0)=1.
a(n) = (2*n+1)!/n * [x^(2*n+1)] (exp(x) - 1)^n for n>0 with a(0)=1.
a(n) ~ 2^(2*n+1) * n^(2*n) / (sqrt(1-c) * exp(2*n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - Vaclav Kotesovec, Nov 05 2014
EXAMPLE
G.f.: A(x) = 1 + x + 15*x^2 + 602*x^3 + 46620*x^4 + 5921520*x^5 +...
where
A(x) = 1 + x/(1+x) + 4^2*x^2/(1+4*x)^2 + 9^3*x^3/(1+9*x)^3 + 16^4*x^4/(1+16*x)^4 + 25^5*x^5/(1+25*x)^5 + 36^6*x^6/(1+36*x)^6 + 49^7*x^7/(1+49*x)^7 +...
MATHEMATICA
Flatten[{1, Table[(n-1)! * StirlingS2[2*n+1, n], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 05 2014 *)
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, m^(2*m)*x^m/(1+m^2*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, (-1)^(n-k-1) * binomial(n-1, k) * (k+1)^(2*n)))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = if(n==0, 1, (n-1)! * Stirling2(2*n+1, n) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = if(n==0, 1, (2*n+1)!/n * polcoeff(((exp(x + x*O(x^(2*n+1))) - 1)^n), 2*n+1))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A232291 A294834 A276489 * A215899 A027505 A012210
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2014
STATUS
approved