OFFSET
1,45
COMMENTS
This sequence is useful for computing A243223, the number of partitions of n into summands in arithmetic progression with common difference 3. The definition follows Nyblom and Evans 2003 (see LINK) with slight modifications and corrections.
LINKS
Jean-Christophe Hervé, Table of n, a(n) for n = 1..10000
M. A. Nyblom and C. Evans, On the enumeration of partitions with summands in arithmetic progression, Australasian Journal of Combinatorics, Vol. 28 (2003), pp. 149-159.
EXAMPLE
a(6) = 1 because 3, the unique odd divisor > 1 of 6 satisfies 3(1+3/3)/2 <= 6 <= 3.3(3-1)/2.
PROG
(PARI) a(n) = sumdiv(n, d, (d > 1) && (d % 2) && (d*(1+d/3)/2 <= n) && (n <= 3*d*(d-1)/2)); \\ Michel Marcus, Jun 02 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jean-Christophe Hervé, Jun 01 2014
STATUS
approved