login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379310
Number of nonsquarefree prime indices of n.
10
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1,49
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
Totally additive with a(prime(k)) = A107078(k) = 1 - A008966(k).
EXAMPLE
The prime indices of 39 are {2,6}, so a(39) = 0.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[prix[n], Not@*SquareFreeQ]], {n, 100}]
CROSSREFS
Positions of first appearances are A000420.
Positions of zero are A302478, counted by A073576 (strict A087188).
No squarefree parts: A379307, counted by A114374 (strict A256012).
One squarefree part: A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.
Sequence in context: A085981 A243224 A127324 * A083917 A117974 A369927
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 27 2024
STATUS
approved