The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034891 Number of different products of partitions of n; number of partitions of n into prime parts (1 included); number of distinct orders of Abelian subgroups of symmetric group S_n. 40
1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 45, 55, 67, 81, 98, 117, 140, 166, 196, 231, 271, 317, 369, 429, 496, 573, 660, 758, 869, 993, 1133, 1290, 1465, 1662, 1881, 2125, 2397, 2699, 3035, 3407, 3820, 4276, 4780, 5337, 5951, 6628, 7372, 8191, 9090 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) = length of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
Number of partitions of n into noncomposite parts. - Omar E. Pol, Jun 23 2022
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..1000 from T. D. Noe)
FORMULA
G.f.: (1/(1-x))*(1/Product_{k>0} (1-x^prime(k))). a(n) = (1/n)*Sum_{k=1..n} A074372(k)*a(n-k). Partial sums of A000607. - Vladeta Jovovic, Sep 19 2002
a(n) = A000041(n) - A353188(n). - Omar E. Pol, Jun 23 2022
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, (p->
`if`(i<0, 0, b(n, i-1)+ `if`(p>n, 0,
b(n-p, i))))(`if`(i<1, 1, ithprime(i))))
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 15 2013
MATHEMATICA
Table[ Length[ Union[ Apply[ Times, Partitions[ n], 1]]], {n, 30}]
CoefficientList[ Series[ (1/(1 - x)) Product[1/(1 - x^Prime[i]), {i, 100}], {x, 0, 50}], x] (* Robert G. Wilson v, Aug 17 2013 *)
b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<0, 0, b[n, i-1] + If[p>n, 0, b[n-p, i]]]]]; a[n_] := b[n, PrimePi[n] ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
PROG
(Haskell)
a034891 = length . a212721_row -- Reinhard Zumkeller, Jun 14 2012
(Sage) [Partitions(n, parts_in=(prime_range(n+1)+[1])).cardinality() for n in xsrange(1000)] # Giuseppe Coppoletta, Jul 11 2016
CROSSREFS
Sequence in context: A114829 A175869 A007279 * A143611 A279075 A062464
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic
a(0)=1 from Michael Somos, Feb 05 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 14:58 EDT 2024. Contains 372641 sequences. (Running on oeis4.)