OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..1000 from T. D. Noe)
Tomislav Doslic, Maximum product over partitions into distinct parts, J. of Integer Sequences, Vol. 8 (2005), Article 05.5.8.
Andrew V. Sills and Robert Schneider, The product of parts or "norm" of a partition, arXiv:1904.08004 [math.NT], 2019. Also in Integers, (2020) Vol. 20A, Article #A13.
EXAMPLE
The partitions of n = 4 are (4), (1, 3), (2, 2), (1, 1, 2) and (1, 1, 1, 1) with the products of partitions being 4, 3, 4, 2 and 1 respectively. As these are 4 distinct numbers (being 1, 2, 3 and 4) we have a(4) = 4. - David A. Corneth, Apr 28 2020
MAPLE
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, max(b(n, i-1), i*b(n-i, min(n-i, i-1)))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 19 2019
MATHEMATICA
Table[Max[Times@@@Select[IntegerPartitions[n], Max[Tally[#][[All, 2]]]<2&]], {n, 50}] (* Harvey P. Dale, May 28 2017 *)
b[n_, i_] := b[n, i] = If[i(i+1)/2<n, 0, If[n==0, 1, Max[b[n, i-1], i b[n-i, Min[n-i, i-1]]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 21 2019, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Apr 19 2019
STATUS
approved